Introduction to Differential Equations (David Polletta, 23:36)
Solution to some Differential Equations (David Polletta, 32:16)
Equilibrium Solutions and Stability Example (Paul Vaz, 4:38)
Classification of Differential Equations (David Polletta, 34:41)
Classification of Differential Equations Examples (Paul Vaz, 2:49)
Exponential Function Example (Katie Kolossa, 1:31)
Sine Function Example (Katie Kolossa, 1:37)
Method of Integrating Factors (David Polletta, 23:33)
Linear, 1st Order Example (Katie Kolossa, 3:33)
Linear, 1st Order Example (Katie Kolossa, 4:26)
Separable Equations (David Polletta, 33:47)
Initial Value Problem Example (Katie Kolossa, 1:33)
Implicit Solution Example (Katie Kolossa, 2:04)
Implicit Solution Example (Katie Kolossa, 3:21)
Modeling with First order equations (David Polletta, 34:41)
Modeling First Order Equations (Paul Vaz, 20:19)
Newton's Law Example (Katie Kolossa, 3:57)
Water Tank Example (Katie Kolossa, 5:16)
Equation of a Curve Example (Katie Kolossa, 1:21)
Population of an Organism Example (Katie Kolossa, 4:54)
Difference Between Linear and Nonlinear Equations (David Polletta, 45:27)
Autonomous Equations and Population Dynamics (David Polletta, 32:12)
Inflection Points (David Polletta, 29:03)
Euler’s Method (David Polletta, 38:34 )
Second Order Differential Equations (Rochus Boerner, 27:19)
2nd Order Constant Coefficients Example (Katie Kolossa, 1:44)
Existence and Uniqueness for Linear 2nd order ODEs (Rochus Boerner, 27:21)
Fundamental sets and the Wronskian (David Polletta, 42:20)
Complex Characteristic Roots (Rochus Boerner, 23:25)
Initial Conditions not at t=0 Example (Katie Kolossa, 5:57)
3rd Order Constant Coefficients Example (Katie Kolossa, 4:27)
Repeated Roots and Reduction of Order (Rochus Boerner, 21:48)
4th Order Constant Coefficients Example (Katie Kolossa, 5:15)
Match Third Order Equations Example (Katie Kolossa, 5:33)
The Method of Undetermined Coefficients for Nonhomogenous ODE's (Rochus Boerner, 33:44)
Particular Solution of Sin and Cos Function Example (Katie Kolossa, 3:43)
Exponential (Atebt) Forcing Function Example (Katie Kolossa, 3:33)
Forcing Function is not Linearly Independent of the Complementary Solution (Katie Kolossa, 4:16)
Mechanical and Electrical Vibrations (Rochus Boerner, 19:48)
Forced Vibrations (Rochus Boerner, 23:47)
Mass Spring System I - Forced Vibration (Paul Vaz, 2:36)
Mass Spring System II - Forced Vibration (Paul Vaz, 2:30)
Mass Spring System III - Forced Vibration (Paul Vaz, 6:40)
Laplace Transform (David Polletta, 36:19)
Algebra of Laplace Transform (David Polletta, 19:49)
Inverse Laplace Transform (Scott Surgent, 6:08)
Laplace Transform for Solving Differential Equations (Scott Surgent, 7:50)
Laplace Transform of derivative and initial value problem (David Polletta, 33:54)
Step Functions (David Polletta, 23:16)
Laplace Transform of Unit Step function (David Polletta, 18:06)
IVPs with discontinuous forcing functions (David Polletta, 32:46)
Delta Function (David Polletta, 32:28)
System of First Order Linear Equations (David Polletta, 26:15)
Solving Homogeneous Linear Systems with Constant Coefficients: Real Distinct Eigenvalues (David Polletta, 18:44)
Geometry of Solutions (David Polletta, 18:01)
Solving Homogeneous Linear Systems with Constant Coefficients: Complex Eigenvalues (David Polletta, 21:00)
Example application (David Polletta, 17:22)
Phase shift and arctan of two arguments (David Polletta, 35:21)
Supplementary materials: Some Linear Algebra concepts (David Polletta, 25:11)