ASU

MAT275


Introduction to Differential Equations


    Introduction to Differential Equations (David Polletta, 23:36)

    Solution to some Differential Equations (David Polletta, 32:16)

      Equilibrium Solutions and Stability Example (Paul Vaz, 4:38)

    Classification of Differential Equations (David Polletta, 34:41)

      Classification of Differential Equations Examples (Paul Vaz, 2:49)

      Exponential Function Example (Katie Kolossa, 1:31)

      Sine Function Example (Katie Kolossa, 1:37)


First Order Differential Equations


    Method of Integrating Factors (David Polletta, 23:33)

      Linear, 1st Order Example (Katie Kolossa, 3:33)

      Linear, 1st Order Example (Katie Kolossa, 4:26)

    Separable Equations (David Polletta, 33:47)

      Initial Value Problem Example (Katie Kolossa, 1:33)

      Implicit Solution Example (Katie Kolossa, 2:04)

      Implicit Solution Example (Katie Kolossa, 3:21)

    Modeling with First order equations (David Polletta, 34:41)

      Modeling First Order Equations (Paul Vaz, 20:19)

      Newton's Law Example (Katie Kolossa, 3:57)

      Water Tank Example (Katie Kolossa, 5:16)

      Equation of a Curve Example (Katie Kolossa, 1:21)

      Population of an Organism Example (Katie Kolossa, 4:54)

    Difference Between Linear and Nonlinear Equations (David Polletta, 45:27)

    Autonomous Equations and Population Dynamics (David Polletta, 32:12)

    Inflection Points (David Polletta, 29:03)

    Euler’s Method (David Polletta, 38:34 )


Second Order Differential Equations


    Second Order Differential Equations (Rochus Boerner, 27:19)

      2nd Order Constant Coefficients Example (Katie Kolossa, 1:44)

    Existence and Uniqueness for Linear 2nd order ODEs (Rochus Boerner, 27:21)

    Fundamental sets and the Wronskian (David Polletta, 42:20)

    Complex Characteristic Roots (Rochus Boerner, 23:25)

      Initial Conditions not at t=0 Example (Katie Kolossa, 5:57)

      3rd Order Constant Coefficients Example (Katie Kolossa, 4:27)

    Repeated Roots and Reduction of Order (Rochus Boerner, 21:48)

      4th Order Constant Coefficients Example (Katie Kolossa, 5:15)

      Match Third Order Equations Example (Katie Kolossa, 5:33)

    The Method of Undetermined Coefficients for Nonhomogenous ODE's (Rochus Boerner, 33:44)

      Particular Solution of Sin and Cos Function Example (Katie Kolossa, 3:43)

      Exponential (Atebt) Forcing Function Example (Katie Kolossa, 3:33)

      Forcing Function is not Linearly Independent of the Complementary Solution (Katie Kolossa, 4:16)

    Mechanical and Electrical Vibrations (Rochus Boerner, 19:48)

    Forced Vibrations (Rochus Boerner, 23:47)

      Mass Spring System I - Forced Vibration (Paul Vaz, 2:36)

      Mass Spring System II - Forced Vibration (Paul Vaz, 2:30)

      Mass Spring System III - Forced Vibration (Paul Vaz, 6:40)


The Laplace Transform


    Laplace Transform (David Polletta, 36:19)

    Algebra of Laplace Transform (David Polletta, 19:49)

      Inverse Laplace Transform (Scott Surgent, 6:08)

      Laplace Transform for Solving Differential Equations (Scott Surgent, 7:50)

    Laplace Transform of derivative and initial value problem (David Polletta, 33:54)

    Step Functions (David Polletta, 23:16)

    Laplace Transform of Unit Step function (David Polletta, 18:06)

    IVPs with discontinuous forcing functions (David Polletta, 32:46)

    Delta Function (David Polletta, 32:28)


Systems of Linear Differential Equations


    System of First Order Linear Equations (David Polletta, 26:15)

    Solving Homogeneous Linear Systems with Constant Coefficients: Real Distinct Eigenvalues (David Polletta, 18:44)

    Geometry of Solutions (David Polletta, 18:01)

    Solving Homogeneous Linear Systems with Constant Coefficients: Complex Eigenvalues (David Polletta, 21:00)

    Example application (David Polletta, 17:22)

    Phase shift and arctan of two arguments (David Polletta, 35:21)

    Supplementary materials: Some Linear Algebra concepts (David Polletta, 25:11)